The global Cauchy problem for the critical non-linear wave equation
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGlobal Well-posedness, Scattering and Blow-up for the Energy Critical Focusing Non-linear Wave Equation
In this paper we consider the energy critical non-linear wave equation ∂ t u−∆u = ± |u| 4 N−2 u (x, t) ∈ R × R u ∣∣ t=0 = u0 ∈ Ḣ1(R ) ∂tu ∣∣ t=0 = u1 ∈ L(R ) Here the − sign corresponds to the defocusing problem, while the + sign corresponds to the focusing problem. The theory of the local Cauchy problem (CP) for this equation was developed in many papers, see for instance [26], [9], [2...
متن کاملOn the Cauchy Problem for a Nonlinearly Dispersive Wave Equation
We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.
متن کاملThe Cauchy Problem for Wave Equations with non Lipschitz Coefficients
In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1992
ISSN: 0022-1236
DOI: 10.1016/0022-1236(92)90044-j